Sign gradations on group ring extensions of graded rings
نویسندگان
چکیده
منابع مشابه
Group - Graded Rings and Duality
We give an alternative construction of the duality between finite group actions and group gradings on rings which was shown by Cohen and Montgomery in [1]. This duality is then used to extend known results on skew group rings to corresponding results for large classes of group-graded rings. Finally we modify the construction slightly to handle infinite groups. Introduction. In the first section...
متن کاملGroup Extensions and Automorphism Group Rings
We use extensions to study the semi-simple quotient of the group ring FpAut(P ) of a finite p-group P . For an extension E : N → P → Q, our results involve relations between Aut(N), Aut(P ), Aut(Q) and the extension class [E] ∈ H(Q,ZN). One novel feature is the use of the intersection orbit group Ω([E]), defined as the intersection of the orbits Aut(N) · [E] and Aut(Q) · [E] in H(Q,ZN). This gr...
متن کاملGaussian trivial ring extensions and fqp-rings
Let A be a commutative ring and E a non-zero A-module. Necessary and sufficient conditions are given for the trivial ring extension R of A by E to be either arithmetical or Gaussian. The possibility for R to be Bézout is also studied, but a response is only given in the case where pSpec(A) (a quotient space of Spec(A)) is totally disconnected. Trivial ring extensions which are fqp-rings are cha...
متن کاملOn the Jacobson radical of strongly group graded rings
For any non-torsion group G with identity e, we construct a strongly G-graded ring R such that the Jacobson radical J(Re) is locally nilpotent, but J(R) is not locally nilpotent. This answers a question posed by Puczy lowski.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Pure and Applied Algebra
سال: 1993
ISSN: 0022-4049
DOI: 10.1016/0022-4049(93)90144-i